Studies of animal and plant microbiomes are burgeoning, but the majority of these focus on bacteria and rarely include microeukaryotes other than fungi. However, there is growing evidence that microeukaryotes living on and in larger organisms (e.g. plants, animals, macroalgae) are diverse and in many cases abundant. We present here a new combination of ‘anti-metazoan’ primers: 574*f–UNonMet_DB that amplify a wide diversity of microeukaryotes including some groups that are difficult to amplify using other primer combinations. While many groups of microeukaryotic parasites are recognised, myriad other microeukaryotes are associated with hosts as previously unknown parasites (often genetically divergent so difficult to amplify using standard PCR primers), opportunistic parasites, commensals, and other ecto- and endo-symbionts, across the ‘symbiotic continuum'. These fulfil a wide range of roles from pathogenesis to mutually beneficial symbioses, but mostly their roles are unknown and likely fall somewhere along this spectrum, with the potential to switch the nature of their interactions with the host under different conditions. The composition and dynamics of host-associated microbial communities are also increasingly recognised as important moderators of host health. This ‘pathobiome’ approach to understanding disease is beginning to supercede a one-pathogen-one-disease paradigm, which cannot sufficiently explain many disease scenarios.